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Abstract 
 

The theory of integer partitions has a long history, dating back to many of the great 
mathematicians, including Ramanujan, Euler, Legendre, and Hardy. Although the 
topic is very accessible to mathematics students of all ages, and although the 
motivating questions involve properties of integer arithmetic, many of the 
techniques applied to this study are often reserved for courses in advanced 
mathematics, such as analysis or combinatorics. Indeed, most of the existing 
literature on the theory of integer partitions is aimed at an audience of 
professionals in mathematics. In this project, the goal is to explore some of the 
main, foundational results of the theory of integer partitions (as presented in the 
textbook of Andrews and Erickson [1]), and then to prepare an expository portion 
of the project that will include a summary of major results and techniques, along 
with examples and appropriate justification. The curriculum materials developed 
are appropriate for the level of students typically found in an undergraduate 
introductory course on discrete mathematics.  The curriculum materials will 
include materials I developed for this project, complete with support materials for 
any teacher wishing to implement these materials with their own students. 
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Introduction to the Mathematical Exploration 

 
Many topics in combinatorics feel immediately accessible, compared to those in 
other areas of mathematics; the ideas of permutations and combinations have 
natural applications to real-life activities and scenarios: cards and dice, the number 
of toppings one might order on a pizza, or how many ways there are to distribute 
Halloween candy to a group of eager children, just to list a few examples. One of 
the great appeals of the subject is how simple it can be to think up situations where 
combinatorial questions might be asked, yet at the same time, the task of 
answering these questions can vary dramatically in difficulty. Combinatorial 
problems can be complex and subtle in their phrasing; variations on the fine print 
can often take the subsequent math in different directions and can have answers 
far less intuitive than the questions would initially imply. 

My recollection of studying integer partitions for the first time is one of particular 
excitement: it was a topic that was clearly rich with difficult questions, but also 
distinctly tangible; by its nature, the analysis of integer partitions focuses on things 
you can touch and see – playing with natural numbers, like children’s blocks, 
arranged and piled together in different ways. In our initial exposure to the topic 
during an undergraduate combinatorics course, we considered the question of 
partition numbers: given some natural number n, in how many different distinct 
ways could you split this n into (potentially) smaller nonempty piles (or parts)?  

For example, splitting n = 3 into parts yields three possibilities: 
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These partitions correspond to the arithmetic facts that 3 = 3, and 3 = 2+1, and 3 = 
1 + 1 + 1. This kind of problem seemed real and tactile, which, for me, made it 
especially fun. 

However, we all quickly discovered that even such foundational questions as this 
were not simple; as one moved beyond the first three or four natural numbers, the 
partition numbers themselves threatened to spiral larger and larger, beyond the 
realm of simple case breakdowns. Less-than-systematic approaches to tracking all 
the different splittings quickly became untenable. However, even when the 
answers became harder to pin down, the process never lost its sense of excitement 
– the mysteries of integer partitions felt important somehow, as if their mysteries 
reached further than we knew at the time. This turned out to be true: integer 
partitions, I now know, have connections to diverse topics such as number theory, 
generating functions, the Fibonacci numbers, Gaussian polynomials, and plane 
partitions, among others.  

As I approached designing this curriculum, I realized that I’d have to narrow my 
focus to touching on just a few of these areas; a fuller, more comprehensive survey 
of integer partitions could easily fill a semester-long course, if not more. 

Since this curriculum will be, for most students, their first exposure to the field of 
integer partitions, I’ve kept it fairly rooted in the basics – the activities all rest upon 
geometric representations of integer partitions, often using Ferrers diagrams, a 
particular way of representing partitions that makes certain identities and 
properties easier to grasp. Each activity will contain some suggestions for 
extensions that can help students dive more deeply into the topic, but there are 
still many more possible activities and applications not covered here that would 
be rich material for future curricula. 
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Integer Partitions 
 

Definition 
 

Let n be a natural number, and let  be natural numbers such that 
, and . (We adhere to this 

weakly decreasing ordering throughout – more on this below). We say that 
 is a partition of n; in other words, n has been written as a 

sum of positive integers. 

One way to represent partitions of integers is by using dots. In each of the partitions 
below, each dot represents a value of 1 (thus, for any partition of n, there will 
always be n total dots). Each row represents a pile (or part) of the partition. 

Example: n = 4. There are five ways to partition the number 4, shown below: 

 

We read the first partition as 1 + 1 + 1 + 1, the second as 2 + 1 + 1, the third as 3 + 
1, and so on. 

It should be mentioned that when studying integer partitions, we assume that 
order does not matter; thus, for example, there is only one partition of 4 into 2 + 1 
+ 1, since other orders, such as 2 + 1 + 1 or 1 + 2 + 1, etc., would not be weakly 
decreasing.  Indeed, if we assume that all partitions are written in weakly 
decreasing order, then this should not present any confusion for the student, 
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especially once they understand how to interpret Ferrers diagrams, which are 
formally introduced later.  

For any natural number n, we say that the partition number is the total number of 
distinct ways that n may be partitioned. 

 

The Partition Function p(n) 
 

The example above, showing that n = 4 can be partitioned in five distinct ways, is 
an example of the partition function: 

Definition: For any natural number n, the partition function p(n) is the number of distinct 
ways of representing n as a weakly decreasing sum of positive integers. 

Looking at our previous example through this new definition, we would say that 
p(4) = 5; in other words, the partition number is the output of the partition function. 

If we look at another example with a larger n, we see how quickly calculating the 
output of this function can become unwieldy. 

Example: n = 5. There are seven ways to partition the number 5, shown below: 
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The following table gives the partition numbers up to n = 20: 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 

 

Looking at such a table, students may struggle to discover the formula for such a 
function (technically, certain formulas or expressions do exist, but they are quite 
technical, far from intuitive, and deriving them is beyond the scope of this 
curriculum). Even a student with some familiarity with number theory or 
sequences and series might struggle to identify a pattern – for example, going by 

the above table for  the partition numbers seem to correspond to the 
prime numbers; however, this breaks down for . However, just playing with 
some low-level examples may be sufficiently intriguing to students to motivate 
them to study the matter further. 

Ferrers diagrams 
In the earlier examples, we visualized different partitions of certain integers using 
dots; these representations are one version of what are called Ferrers diagrams (or 
Ferrers graphs). The other way they are commonly represented is by the use of 
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squares (or blocks). Here, again, are the partitions of n = 4, using squares instead 
of dots: 

 

Each of these partitions is a Ferrers diagram; as with the dot representation, each 
row in the diagram represents one part of the partition; further, the rows of Ferrers 
diagrams are also always given in weakly decreasing order, top-to-bottom, like 
before. This alignment is consistent with our supposition that in integer partitions, 
the order the parts are written in does not matter, so we default to a weakly 
decreasing order to avoid confusion. We will follow this pattern whenever we deal 
with Ferrers diagrams. 

We note: The number of rows in any Ferrers diagram is equivalent to the number 
of parts n is broken into; similarly, the length of the longest row (or rows) in the 
diagram represents the largest part(s) in the partition. This example also illustrates 
that for any n > 1, there are always, at minimum, two trivial partitions of n: One 
into one part of size n (the diagram on the left) and into n parts of size 1 (the 
diagram on the right). 

Partition Identities 

Conditions on Partitions 
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The original partition function, complex as it is, is merely a starting point for our 
exploration. Where the world of integer partitions truly crosses over into the weird 
and wondrous is with the incorporation of certain conditions on the partition 
numbers: For instance, rather than just a general counting of all partitions, what if 
we restricted ourselves to counting only the number of ways to partition some 
natural number n so that no two parts have the same size? We might write this 
using the notation p(n | distinct parts). 

How would this constraint affect the outcomes? There are some immediate 
consequences: for even n, for example, the partition of n into two equal parts of 

size  would immediately be disqualified; however, this is far from the only sort 

of way we could get repeated parts. We will discuss a more precise method for 
counting such conditional partitions in the next section. 

Another example: How many partitions are there of some given n such that there 
are only an even number of odd parts? In this corner of the mathematical universe, 
the notation is again necessarily descriptive: p(n | even number of odd parts). 

This is to say: Count only the partitions in which the number of odd parts is even. 
How can we think about this? How do we begin to find a systematic way to count 
such integer partitions, where each new condition seems to take it further and 
further from the (comparatively) pleasant realm of the original partition function? 

 

Bijective Proofs of Partition Identities 

 

In my research for this project, I discovered that one of the most common ways to 
count specific conditional partition numbers is by using bijective proofs – similar to 
other topics in math whereby identifying a bijection between two sets guarantees 
an equivalence in their cardinality. Applied to integer partitions, this has two 
immediate benefits. First, by linking what might be one very complicated or 
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difficult conditional partition to another (which may be easier think about/play 
with), we can more confidently determine the partition number of the more 
complicated one (assuming we are able to count the simpler one successfully). 
Second, using this method this reveals many intriguing and oftentimes surprising 
relationships between different types of groups of numbers. This second benefit is 
the real jewel -- while it can often be difficult to find an exact number for certain 
partitions, this is often less meaningful than finding unexpected equivalences 
between seemingly unrelated classes of partitions. 

For many students, the process of finding bijective relationships between sets can 
be a challenge; one of the nice things about considering them using integer 
partitions is the inherently visual/tangible aspect of the subject. In the section 
below, one of the most well-known integer partition bijections is given. However, 
in a classroom environment, it may be worthwhile to allow students time to play 
with trying to find bijections between different partitions on their own, without 
any scaffolding (prior even to introducing them to the technique described below). 
By allowing themselves the space to play with small examples, students can begin 
to develop their instincts for relationships between different types of partitions, 
even if they do not fully understand why they exist.  

 

Euler’s Identity 
 

To begin to explore bijections on integer partitions, let’s examine one of the most 
famous: Euler’s Identity. 

p(n | odd parts)  = p(n | distinct parts) for n ≥ 1 

The identity makes the claim: for any n ≥ 1, the number of ways to partition this n 
into odd parts is equal to the number of ways to partition it into distinct parts (no 
two parts the same size). 



 
 

12 

Let us start by considering the gentle case of n = 5. 

If we try to systematically list all partitions of 5 into odd parts, we may start by 
partitioning 5 entirely, then eliminating all partitions with even parts. Suppose we 
list all partitions of n = 5 by number of parts, low to high: 

5 

4 + 1 

3 + 2 

3 + 1 + 1 

2 + 2 + 1 

2 + 1 + 1 + 1 

1 + 1 + 1 + 1 + 1 

So p (5) = 7. Of these, 4 + 1, 3 + 2, 2 + 2 + 1, and 2 + 1 + 1 + 1 are disqualified (since 
they contain even parts). So, by elimination,  

. 

So, according to the identity, there should be exactly three partitions of 5 into 
distinct parts as well. Looking at the initial list, we see that they are the partitions 
5, 4 + 1, and 3 + 2. 

This example, while manageable, is not entirely convincing; why would these two 
be equal in general? 

The proof hinges upon the idea of merging and splitting. The idea is this: In order 
to pair each partition of odd parts with exactly one partition into distinct parts, we 
need only concern ourselves with any instances of repetition – i.e., partitions where 
certain part sizes occur more than once. Wherever we find such repeated parts, we 
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merge them, creating a single part twice as large, one pair at a time. We repeat this 
process until no more repeated pairs remain. 

So, let us again consider our three partitions into odd parts: 

. 

In the case of the first partition, the 5 is already distinct; so, we leave it alone 
(trivially, this also results in a partition into distinct parts). 

In the second case, we have two 1’s; thus, according to the technique, we merge 
these: 

 

Since there are now no more repeated parts, the process terminates. 

Finally, for the partition into all parts of size 1, the merging occurs in stages: 

 

It is worth mentioning here (to avoid any confusion that students may have): there 
are technically five repeated parts, but, the process merges only two at a time; thus, 
order not really mattering, one pair of ones would merge, then another pair; the 
remaining one would not be absorbed at that point, since it would become distinct. 
However, by these initial mergings, we then have repeated parts of size 2, so they 
also merge, giving us our final (and distinct) partition of 4 + 1. 

By design, this process necessarily terminates with all parts being distinct. 

To complete the picture, however, we need to explore the other direction: sending 
each distinct partition to exactly one partition with all parts odd. 

To go from odd to distinct, we used the technique of merging; to go back, we use 
the natural inverse of this idea: splitting. Given some distinct partition of n, we 
focus only on any even parts it contains; parts that are odd to begin with are left 
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alone. Each even part is split into two equal, smaller parts (for instance, 6 would 
be split into two parts of size 3), one pair at a time. If each of these smaller parts is 
also even, it too is split into two parts of equal size, as many times as necessary for 
each until each of the two smaller parts is odd (this must always eventually 
terminate – since any natural number is divisible by two finitely many times). The 
result is a partition into odd parts. 

On the one hand, this merging/splitting technique feels very intuitive, almost 
obvious (however, without knowing what to look for when seeking a bijection 
between the two types of partitions, it may not be as obvious, especially to 
students). 

Another thing worth commenting on is that, while the merging/splitting 
approach seems to do the trick of turning any partition into odd parts into one in 
distinct parts, or vice-versa, we might still be skeptical that this is truly a bijection. 
Might not there be two different partitions into odd parts which, when they 
undergo the splitting process, land at an identical partition into distinct parts? 
Similarly, could we not conceive of two different partitions into distinct parts that 
then were split into the same partition into odd parts? How could we be sure, 
when this entire process is based on the idea that we are not actually counting the 
number of partitions of each type (indeed, it may be very labor-intensive to do so)? 
How could we know? 

As is often the case with integer partitions, a formal proof is neither obvious nor 
appropriate for students just learning about the topic (many of them involve more 
advanced applications of proof by induction). For our purposes, an informal 
description will suffice. 

Suppose that M is a partition of some n into distinct parts. If every part of M is 
already odd, then there is nothing to do; so, let us assume that there exists at least 
one even part in M. As described, the splitting process will take this part and break 
it into two smaller parts of the same size. Are these parts both odd? If so, nothing 
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more is done; if they are still even, then the process splits each of them again, until 
only odd parts remain. If there is more than one even part in M, this process 
continues until all have been processed. 

How can we feel sure that this process guarantees a unique odd partition when all 
is said and done? One key fact here is that each splitting does not affect any other; in 
other words, the order of the splitting was arbitrary. Since every even part in M is 
eventually split into some collection of odd parts (and this end result is uniquely 
determined for each such part), the total partition into odd parts will also be 
unique. 

A similar argument can be made in the other direction. Suppose that M’ is a 
partition of n into odd parts. As before, if there are no repeated part sizes, there is 
nothing to merge; the partition is already distinct. 

Suppose, then, that there exists at least one pair of nondistinct parts. By our 
method, these parts are merged into a single part, twice as large. If the two original 
parts were the only same-size pair, we are done; if another exists in the original 
partition, it too is merged, and on and on. 

As with the splitting, the order of each merging of pairs does not affect any other. 
However, there is one extra point worth mentioning here: It was essential to this 
technique that the starting set of parts be odd; if we allowed for even-sized parts, 
it is conceivable that two different partitions could be drawn up that would 
“merge into each other” by this process. For instance: 

2 + 2 + 4 + 1 + 1 + 1    and   4 + 4 + 1 + 1 + 1 

Our technique would merge the 2’s in the first partition, thus turning it into the 
second partition; from there, both would follow the same road. 

Why is this avoided when we restrict ourselves to odd parts only? It has to do with 
the fact that, given any two repeated odd parts, they merge to form an even part – 
and because, by construction, integer partitions contain a finite number of parts, 
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no matter how many different odd parts we begin with, the initial merging of all 
repeated odd parts must result in a uniquely determined set of even parts, repeated 
or otherwise, which will then continue to merge by this process until all parts are 
distinct. Our above counterexample showed that if we allow in even parts, it can 
become unclear where in the process we are, i.e., if one partition is not really 
another in disguise. 

Conjugate Partitions 

Introduction 
For many students, Euler’s identity provides a solid introduction to the idea of 
bijections on integer partitions, due to the simplicity of the technique. 

Another operation on integer partitions which both sheds light on interesting and 
unlikely bijections and is intuitively straightforward is that of conjugation. 

To explore this idea, we return to the concept of Ferrers diagrams introduced 
earlier. 

Consider the Ferrers diagram below. 

 

We may read this as 4 + 4 + 2 + 1 + 1, a partition of n = 12. 

Referring to this diagram of this partition, we define conjugation as a 
transformation which essentially transposes the diagram along the main diagonal, 
swapping the horizontal with the vertical: 
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Visually speaking, if we squint, we see that the long left-side column of the first 
partition is now the top row of the second, and so on. 

The original partition was 4 + 4 + 2 + 1 + 1; looking at the second partition, we read 
it as 5 + 3 + 2 + 2; a completely different partition of the same number of blocks! 
Taken together, we call these two conjugate partitions. 

When students play with the idea of conjugate partitions, they will notice a few 
immediate consequences. One is that under conjugation, the number of rows of one 
partition becomes the longest row of the other. This is given by the following 
theorem: 

 

There is a corollary to this theorem: 

 

A sketch of a proof is given below. 

Suppose that some n is partitioned into m parts. In the language of Ferrers 
diagrams, this is equivalent to the partition having m rows. Thus, under 
conjugation, we may imagine the left-side column of the original diagram 
becoming the largest part of the conjugate partition (this is the essence of the first 
theorem above); the theorem holds whether or not this greatest part is unique in 
the conjugate partition. 
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The corollary proceeds in an inductive manner. If n is partitioned into m parts, 
then the proof is done. If, however, n is partitioned into fewer than m parts, then 
there still must exist at least one largest part of this partition (call it ). Supposing 
that   means that there are fewer parts in this partition than our original 
one. Under conjugation, this  part (or, row in the Ferrers diagram) becomes 
the largest part of the conjugation partition, of size . And since  was an 
arbitrarily chosen part (less than or equal to the  part), we may generalize this 
for all parts less than or equal to the original largest part. 

Self-Conjugate Partitions 
Definition: A partition is said to be self-conjugate if it is equal to its own conjugate.  

A visual example will help to demonstrate this concept. 

 

One interesting identity that utilizes conjugation is 

 

Verifying this identity using Ferrers diagrams may be a useful introductory 
exercise for students. We will use conjugation to explore this, and more interesting 
and unintuitive bijections, in a later activity. 
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Miscellaneous Extensions 

An Upper Bound on p(n) 
One intriguing question that comes up when you start to study integer partitions 
is, just how fast do the partition numbers p(n) grow? 

This is a complicated question, and beyond the scope of this paper; however, there 
are some interesting observations to be made. Let us first formally establish 
(beyond an intuitive sense) that p(n) is an increasing function. 

We wish to show that 

p(n) > p(n – 1) for all n ≥ 2 

An informal proof is given below. 

Suppose n = 3. The three partitions of n are shown below: 

 

        1 + 1 + 1             2 + 1                    3 

 

To each of these partitions, we may add a single dot to a new bottom row, creating 
certain partitions of n = 4: 
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It follows that given the partitions of n, we can form new select partitions of n + 1 
by adding a single dot in a new row to each specific partition (as we did above). 
This brief example gives the following identity: 

p(n – 1) = p(n |at least one 1-part) 

However, what about partitions of 4 that do not have a 1-part (that is, a row with 
one dot)? We know, trivially, that included in the partition of any natural number 
is the number itself (for instance, 4 into one part of size 4). There is also the 
partition of 4 into 2 + 2. These, combined with our above three partitions, yield the 
full partition set of 4, as we saw earlier:   

 

Since there is – at minimum – always at least one partition of n (assuming n ≥ 2) 
without a part of size one (and often more than one), we arrive at the following 
identity: 

p(n) = p(n – 1) + p(n | no 1-part) > p(n – 1) 

Thus, p(n) is an increasing function. 

In putting together this curriculum, I also learned that the upper bound for the 

partition function p(n) turns out to be the (n + 1)st Fibonacci number  ! This 

is awesome, not at all obvious, and, as with many other connections between 
integer partitions and other topics in mathematics, worthy of further 
investigation in other curricula. 

The Composition of an Integer 
There is one more interesting connection between integer partitions and the 
Fibonacci numbers worth mentioning here. 
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Let us define a composition of an integer to be a partition where the order of the 
parts does matter (this represents a break from our usual way of considering 
integer partitions). For example, suppose we consider the compositions of integers 
into parts of size 1 or 2 only. It will be instructive to list out some of these 
compositions:  

n = 1: 1 

n = 2: 2, 1 + 1 

n = 3: 2 + 1, 1 + 2, 1 + 1 + 1 

n = 4:  2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1 

n = 5: 2 + 2 + 1, 2 + 1 + 2, 1 + 2 + 2, 2 + 1 + 1 + 1, 1 + 2 + 1 + 1, 1 + 1 + 2 + 1, 1 + 1 + 1 + 2,  1 + 1 + 1 + 1 + 1 

n = 6: 2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 2 + 1, 2 + 1 + 1 + 2, 1 + 2 + 1 + 2, 1 + 2 + 2 + 1, 1 + 1 + 2 + 2, 2 + 1 + 1 + 
1 + 1, 1 + 2 + 1 + 1 + 1, 1 + 1 + 2 + 1 + 1, 1 + 1 + 1 + 2 + 1, 1 + 1 + 1 + 1 + 2, 1 + 1 + 1 + 1 + 1 + 1 

Let us denote the number of each of these integers into parts of size one or two as 
the composition number C(n). From the above list, we get the following table: 

 

 

 

 
Considering this table, a pattern starts to appear: For each n, C(n) seems to be 
equal to  the (n + 1)th Fibonacci number. This turns out to be true for all n – 

a sketch of a proof is given below. We will use horizontal rows of squares to 
represent each number n. 

Starting with n = 1, we trivially observe that there is only one way to partition this 
number into parts of size 1 or 2: 

 

n 1 2 3 4 5 6 

C(n) 1 2 3 5 8 13 
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So C(1) = 1, which is equal to . 

For n = 2, we now have the possibility of either leaving it as one part of size 2, or 
breaking it into two parts of size 1: 

 

So C(2) = 2, which is equal to . 

From here, rather than continuing to list them out, we consider an inductive 
approach. For all n ≥ 3, we first ask, does the rightmost square (the ‘end’ square, 
so to speak) in the row belong to a 2-part, or a 1-part? 

If the end square belongs to a 2-part, it leaves (n – 2) squares in the row to assign 
to either a 2-part or a 1-part. If the end square belongs to a 1-part, it leaves (n – 1) 
squares in the row to assign to either a 2-part or a 1-part. 

Having established C(n) =   for the two base cases prior to n = 3, we already 
know how to count both of these cases; thus, for each increase of n, the total 
number of ways to partition it into parts of size 2 or 1 is recursively defined, with 
each new composition number being equal to the sum of the prior two. 

Thus, 

 

Connections to the Arithmetic Triangle 
This proof regarding the Fibonacci numbers, while quite interesting, may be a 
stretch to integrate into a curriculum on integer partitions. However, there is 
another interesting combinatorial connection to be made from this particular 
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brand of composition numbers, which may help form a bridge between the 
composition numbers and the Fibonacci numbers: the Arithmetic Triangle. 

Let us reconsider the composition of n = 5 into ordered parts of size 1 or 2 (C(5)): 

 

The method here is not too dissimilar from the inductive Fibonacci approach; here, 
however, we use a summative approach – we start from no parts of size 2, count 
them all, then count all distinct composition with one part of size 2, two parts of 
size 2, and so on. 

If we start with the composition into all parts of size 1 (i.e., zero parts of size 2), 
then, trivially, there is only one such composition: 

 

We may say that there are  such composition (where we are “choosing” the 

number of 2-parts). 

We then consider the number of compositions with one part of size 2: 
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Here, because we have one 2-part, the total number of parts has gone down by one, 

so we are looking at  compositions of this type. 

We next consider compositions with two 2-parts: 

 

With two 2-parts, we’ve reduced the number of 1-parts to one, for a total of three 

parts. So, what we have here is  distinct compositions of this type. 

There are no more parts of size two we can pull out, so we have exhausted all 

possibilities. So, for n = 5, we have  total ordered partitions (or 

compositions), which, as we noted before, is equal to . But, since we’ve 
approached this in a combinatorial manner, we now consider this result in light of 
the Arithmetic Triangle: 
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Our composition number C(5) is embedded in the Arithmetic Triangle as the sum of 
entries along a sort of diagonal line, starting at row 5, column 0: 1 + 4 + 3 = 8. 

We need not list the visuals of larger n to see if this pattern keeps up. Considering 
n = 6, let k be the number of 2-parts in our ordered partitions: 

If k = 0: There is  way to partition six. 

If k = 1: There are  ways to partition six. 

If k = 2: There are  ways to partition six. 

Unlike when we considered n = 5, we can go one step further here, letting k = 3: 

If k = 3: There is  way to partition six. 

This gives us 1 + 5 + 6 + 1 = 13 total partitions of six into ordered parts of size 1 or 
2, which is equivalent to the 7th Fibonacci number. Looking again at the Arithmetic 
Triangle, we see: 
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So once again, we are finding our Fibonacci/composition numbers represented as 
the sum of entries along this diagonal! 

Looking at the Arithmetic Triangle representations of C(5) and C(6), we note 
something interesting: If n is odd, then there can be no partition into all parts of 
size two, but if n is even, there can (the addition of the final 1 shown in our second 
composition above). From this, we generalize to an informal identity: 

 

Summing over k up to the floor function value of  accounts for the variation 

between even and odd integers, and, as we noted in our examples, each time k 
goes up by one, the total number of parts n decreases by one. For even values of n, 
this function allows for the case of all parts of size 2; for odd values; the function 
stops one short of this. 

The Arithmetic Triangle, which may be familiar to undergraduate-level students 
in a combinatorics class, is already rich with mathematical applications (especially 
from a counting perspective), so it is pretty awesome to see it also connect to the 
Fibonacci numbers and the integer partitions in this way! 
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Activity 1: Long Rectangles 
  

Introduction/Notes on the Activity 
 

In my reading for this project, I came across a problem which illustrated integer 
partitions using the concept of “long rectangles.” At first, it didn’t really catch my 
attention as a problem with too much to offer students in terms of insight into 
integer partitions, at least as I’d been thinking of them up to that point; from the 
perspective of Ferrers diagrams, these long rectangles were fairly unremarkable. 
However, the more I delved into it/played with examples, the more interesting a 
problem it seemed in its own right, with several unexpected connections to other 
mathematical concepts. 

In this activity, students are given a fairly trivial Ferrers diagram: one row of 
blocks (with the lengths varying group to group). For each starting row, students 
then add on a sort of “long L” atop the initial row: for instance, a 1 x 4 diagram 
becomes a 2 x 5 diagram, then a 3 x 6 diagram, and so on (as shown in the 
worksheet below). The key fact here from an integer partition standpoint is that 
the amount of increase between the added parts goes up consistently by 2 at each 
stage: So, 1 x 4 = 4, 2 x 5 = 4 + 6, 3 x 6 = 4 + 6 + 10, and so on. The initial aim of the 
activity is to have students play with this constructive technique, make notes of 
any patterns they see, and record their data, with the ultimate goal of trying to 
write a function to describe the total number of blocks as a function of the starting 
row length and number of expansion steps. 

For the second part of the activity, students will be given certain value s (which 
represents the total number of blocks in some long rectangle) and asked if they can 
work from that value backwards to reconstruct a starting row, and how many 
expansion steps would be taken to arrive at it. The idea here is to challenge 
students to think about the idea of preimages of function outputs using this 
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geometric approach, and to help them think about the function being either 
injective or surjective. 
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Worksheet (Day 1) 

 

Instructions: In this activity, we’re going to be building an ever-expanding rectangular structure (a math fortress, 

maybe?) using square blocks. The way it will go is this:

You begin with a single row of blocks, and you expand your structure one layer at a time. The way you expand it is to 

add an ‘L’ shape on top of the base row (as shown below). The result with each step will be a new, larger rectangle: 

what we are calling a long rectangle, meaning a rectangle where the width is always greater than or equal to the 

height.

For example: Here is a starting row with 4 blocks 

(with a line below indicating “ground level”):

We then add an ‘L’ shape over this row:

The result is an expanded

long rectangle.

The next expansion would look like this:

Long Rectangles Worksheet
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Starting with our previous rectangle…

We add a new ‘L’ shape over it,

and the result is a new rectangle.
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Your first task is to take the starting row you’ve been given, and add layers to it. As you do, discuss amongst your 

group:

How is the total number of blocks growing at each step?1.

How might you track this?2.

What quantities seem relevant? Are there others that are less relevant?3.

What’s a good way to represent your data?4.

Your starting row has _______ blocks (each group of students will be given a different starting number of blocks).

Use the given space to work in your group, to play around with the expansion, and note any patterns you see.
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What did you notice? How did you track each step of the expansion? Did you notice any patterns?
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Now, using the below table, fill in the data you collected as a group.

With your data captured in this way, your next task is to try and write a function for s.

What would such a function look like? What would be the input(s)? Work in your group and brainstorm ideas.

l 1  2  3  4  5  6  7         8

(length of starting row)

(sum of all the 
blocks)

(layers)
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Bonus Activity

This activity is similar to the original, except instead of adding a ‘long L’ to construct new rectangles, we expand the 

structure on both sides, as shown below:

Using this new pattern of expansion, play the same game as before: record data for several steps of expansion, and 

then see if you can write a new function for s based upon this alternate approach.
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What has changed? Does this change make sense? Why or why not?
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Homework

Between now and next class, play out a few more long rectangles, with different starting r than you had today. Can 

you find a function for s with these different starting rows, similar to what you did in class?

After playing through a few examples, here’s the challenge: Can you find a function for s that works for any starting 

value of r? (Hint: Look at the functions you wrote for the long rectangles you created with the specific values for r, 

and see what they have in common)

What would the domain of such a function be? What would the range be?

Here is another copy of the table we used in class, as well as a diagram of the expansion technique:

an

Name:__________________



 
 

37 

  

Day 1 Activity Key

The function takes ordered pairs (r, l) as its inputs (in other words, the domain is the Cartesian product of the natural 

numbers). Given r = 4, the function would be:

For the homework, students play with different starting values for r to detect patterns; ultimately, they should arrive 

at the following general functions for s:

The domain is the Cartesian product of the natural numbers, and the range is the set of all natural numbers.

For the bonus question, students will notice that the difference between each added layer is going up by 4 instead of 2.

l

4 10 18 28 40 54 70 88

(length of starting row)

(sum of all the 
blocks)

(layers)
1  2  3  4  5  6  7         8
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Worksheet (Day 2)

 

In the last class, we talked about finding an explicit function for s in terms of l. For homework 
you considered a way to write a general function that worked for any r and l. Here is one 
version of such a function:

    s(r, l) = l( l + r – 1 )

Now we're going to look at it from a different perspective.

Suppose I tell you that after adding a certain number of layers, a long rectangle has 48 blocks 
(in other words, s = 48). Working with your group, can you find an r and l that would generate 
this rectangle, using the process we practiced last class?
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Are there any s where there are no possible long rectangles with that number of blocks? Why 
or why not?

Do you notice anything about the values of s which correspond to multiple long rectangles vs 
those which only correspond to one?
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Now I’ll give you another value for s (each group will have a different value). Since s is the 
output of the function we constructed, I want you to try to find as many preimages for s as you 
can, using the ovals below!

Your value of s is _______.

Having done this, do you think you could write an inverse function to describe this map? Why 
or why not?

domain range
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Let’s play with one more variation on this. I’d like you to work in your groups to construct 
new long rectangles using the method we practiced last class. But this time, fix r = 1.

Construct the rectangles and use the table to track your data. What do you notice?

11
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Connecting Back to Integer Partitions

One thing we touched on at the beginning of this activity was tracking how much the total 
number of blocks in our rectangles in our examples were increasing step by step.

For s = 36, there 5 long rectangles with this number of blocks:

o
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Describe these rectangles as the sum of the shaded regions. 

(for instance, the first one would be: 36 = 36, the second one is 36 = 17 + 19, etc.)
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Day 2 Worksheet Key
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Are there any s where there are no possible long rectangles with that number of blocks? Why 
or why not?

No. Since l may always be trivially set to 1, a long rectangle can be made for any natural 
number s simply by having an initial row of length s.

Do you notice anything about the values of s which correspond to multiple long rectangles vs 
those which only correspond to one?

After the above exercise, the idea here is that composite numbers correspond to values of s with 
more than one long rectangle, whereas prime numbers will correspond to only one (since they 
are only factorable in one way).
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Now I’ll give you another value for s (each group will have a different value). Since s is the 
output of the function we constructed, I want you to try to find as many preimages for s as you 
can, using the ovals below!

Your value of s is _______.

Having done this, do you think you could write an inverse function to describe this map? Why 
or why not?

In general, an inverse function is not possible, because (as the above work highlights), any s 
which is a composite number will, by definition, have multiple preimages; therefore, s itself is 
not a one-to-one function, and so is not invertible.

domain range
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Let’s play with one more variation on this. I’d like you to work in your groups to construct 
new long rectangles using the method we practiced last class. But this time, fix r = 1.

Construct the rectangles and use the table to track your data. What do you notice?

Letting r = 1 corresponds to s being the set of perfect squares.

11
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Connecting Back to Integer Partitions

One thing we touched on at the beginning of this activity was tracking how much the total 
number of blocks in our rectangles in our examples were increasing step by step.

For s = 36, there 5 long rectangles with this number of blocks:

o
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Describe these rectangles as the sum of the shaded regions. 

(for instance, the first one would be: 36 = 36, the second one is 36 = 17 + 19, etc.)

The answers here would be:

36 = 36
36 = 17 + 19
36 = 10 + 12 + 14
36 = 6 + 8 + 10 + 12
36 = 1 + 3 + 5 + 7 + 9 + 11
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Reflections on the Activity 
 

Asking students to work with building their own rectangular structures step by 
step seemed like a fun task to assign, but I was concerned that it might be too big 
of a leap to ask them to go from this freeform, data-gathering stage to trying to 
write the function explicitly. At first, I considered giving students a pre-made 
table, complete with defined variables, to track their steps and the total number of 
blocks at each step, thinking that with this data in front of them, they could 
eventually make a conjecture for the function: 

 

 

However, thinking that some students might really struggle with this, I thought I 
should add in a row that looked at the rectangle at each stage in terms of its height 
and width; in other words, considering each s not as the sum of increasing parts, 
but as the product of factors. In my eagerness to help them make this connection, 
I modified the original table to include, for each stage in the expansion, the h x w 
factor-expression for the rectangle (here replacing l with h): 

h 
(height) 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

h x w 
(height x width) 

        

s         
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However, after thinking about it and running through some examples, I realized 
the dangers in this addition: It over-scaffolded the problem such that once students 
recognized the pattern of the factors in the table, they’d no longer feel the need to 
construct the rectangles using the (more instructive) partition method, and, more 
insidiously, it might short-circuit their process of thinking about constructing a 
function for s in terms of the variables of initial starting row and number of steps. 
By trying to lead them towards the connection between composite numbers and 
the non-injectivity of the function, I’d risked derailing them into a whole other area 
of mental consideration. 

So, I scrapped the h x w row, and streamlined it back to just playing with the blocks, 
recording the s at each step, and letting them approach it more constructively. I do 
still feel that there is valuable number-theoretic insight to be gained from 
considering this activity from that perspective, but that this examination belongs 
firmly as a follow-up extension or addition, to be included or excluded at the 
teacher’s discretion. 

Given the time allotted for this activity, there is much that can be added as 
homework or as follow-up questions; even though the activity only lightly touches 
on integer partitions as a concept, there is an interesting line to be drawn between 
these partitions of sums and the different factorizations of the natural numbers. 

Reflections on Student Work 
 

For each day of the activity, I gave students copies of the worksheets and collected 
them at the end of class. Many groups of students picked up on the patterns 
quickly and anticipated the direction I was going; there was a good variety of 
methods used in capturing the data and deciding which quantities were relevant 
and which were not. Most groups hit upon the quadratic relationship at the heart 
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of the long rectangle function early on. That said, there was an impressive variety 
of algebraic and sequential approaches to writing the explicit function for s.  

One challenge that students faced was correctly identifying the domain of the 
function s(r, l), with many thinking that it was the set of natural numbers rather 
than the Cartesian product of the natural numbers (only a few groups correctly 
identified this). From what I could tell, this seemed to be more a matter of the 
amount of time they had than anything else; nearly every group correctly 
identified the function as multivariate, but perhaps just needed an extra nudge to 
connect this fact to the correct representation of the domain. 

For the second day’s activity, the students’ work was similarly excellent; most 
groups hit upon the fact that the function s was not one-to-one due to several 
different values of s having multiple preimages. Some groups correctly identified 
the prime numbers as the only values of s for which there was a unique preimage; 
however, my feeling reading through their work on the second day was again that, 
given more time, all groups could have eventually identified this fact and arrived 
at a good grasp of why it was so. 

Extensions 
 

This activity seems to have only scratched the surface in terms of its connections 
to other mathematical topics. In the time I had with the class, we explored 
connections to multivariate bijective functions and the relationship between 
integer partitions and the prime and composite numbers. One cool extension of 
this activity is found in the next activity on recurrence relations; however, students 
would also benefit from creating a general table for r and l based upon the formula 
they came up with in this activity without making the pivot into recursive 
functions, as it provides many interesting patterns for study. 
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Activity 2: Recurrence Relations on Long Rectangles 

Introduction/Notes on the Activity 
 

The intention with this activity is to be a sort of “alternate universe” approach to 
the long rectangle problem of the previous activity, which put the main 
mathematical focus on thinking about bijective functions and the relationship 
between the prime and composite numbers and uniquely determined long 
rectangles. 

The genesis of this activity came about when I was analyzing the general 8x8 (r,l) 
table that I’d originally envisioned as an extension in the previous activity. 
Looking at that table, it eventually presented itself as an opportunity for students 
to study the relationship between different long rectangles from the perspective of 
recurrence relations. The hope for this activity is that by giving students a geometric 
representation of a recursive identity, they might strengthen their understanding 
of recurrence relations in general, and also use it as an entry point into further 
study on geometric relationships, and more complex recurrence relations. 

The activity will begin similarly to the first, with students being briefed on the 
construct and meaning of long rectangles. However, unlike the first activity, we 
then shift gears to presenting students with a given recurrence identity for any 
long rectangle with s(r, l) blocks (where students have no explicit formula for this). 
By withholding the formal expression for s(r, l) from the previous activity, students 
will instead get the opportunity to play around with the recurrence identity 
geometrically, and from there, fill in the 8x8 table for r and l themselves, based 
only on their brief exposure to long rectangle construction. 
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Once the table is complete, students will then get to analyze it, and attempt to 
conjecture a general formula for s(r, l), similar to what was done in the first activity. 
Here, however, the intention will be to set students up to explore their 
understanding of proving recurrence relations by using induction to verify that the 
explicit function they have conjectured is in fact equal to the recurrence relation 
version. 

Note: Depending on when this activity is presented, the process of proving the 
identity could present quite a challenge for many students without adequate 
scaffolding. The induction proof is more complex than what some students may 
be used to, so it may be either left as an optional part of the activity (since the main 
benefit is the geometric representation and pattern-finding of the 8x8 table), or, the 
activity may be appropriate for an intermediate-level combinatorics course, where 
students already have some experience with induction and proving recurrence 
relation identities. 
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Worksheet 

 

In this activity, we’re going to study something called long rectangles, using square blocks.

To make a long rectangle, you begin with a single row of blocks, and then expand it one layer at a time. For example:

For example: Here is a starting row with 4 blocks 

(with a line below indicating “ground level”):

We then add an ‘L’ shape over this row:

The result is an expanded

long rectangle.

The next expansion would look like this:

Long Rectangles & Recurrence Relations
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Starting with our previous rectangle…

We add a new ‘L’ shape over it,

and the result is a new rectangle!

Let us define the following variables.

v
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r = the number of blocks in the starting row.

l = the number of levels (or layers) of the long rectangle (at the beginning, this is always 1!)

s = the total number of blocks in the rectangle at any stage.

With these variables in mind, we may say that s is a function of r and l. In other words, given some specific pair (r, l), 

we can always create a long rectangle with a specific s number of blocks. We will describe this function as s(r, l), where 

r and l are any natural numbers.

Before we move on, just know this: Given any long rectangle, you can visually identify r and l by shading in the 

layers, like this (using our previous example):
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Recurrence Relations on Long Rectangles

With this idea of a long rectangle of s(r, l) blocks in mind, here is a recurrence relation identity: 

Your first task is to verify this identity! In groups, make up your own long rectangles – you may choose any r and l 
you like (keep in mind that if either r or l become too large, your rectangle will also be pretty big!), and see if the 

identity checks out.

As you work, note any patterns you see.

 

What do you notice? Is the identity holding?
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Part 2: A table for s(r, l)

Your next task is to use this identity to fill out the following table, where the columns are values of l, and the rows are 

values of r. (Hint: begin by generating the first row and column, using the rectangles!) Use the recurrence relation to 

fill out the rest of the table!

1 2 3 4 5 6         7               8

    

    

    



 
 

60 

 

Part 3: Finding an explicit formula for s(r, l)

In your group, look at the table you created in the last step. Can you use it to try and find a general formula for s as a 

function of r and l (in other words, without using the recurrence relation)?

Write down any patterns you see!
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Part 4: Proving the Recurrence Relation

With this conjecture for s(r, l) in mind, your final challenge is to prove the recurrence relation, using induction.
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Answer Key

 

Recurrence Relations on Long Rectangles

With this idea of a long rectangle of s(r, l) blocks in mind, here is a recurrence relation identity: 

A sample problem verifying the identity is given below, with r = 4 and l = 3.

 

The intuitive/geometric connection to be made here is that on each side of the equal sign, the smaller long rectangle 

nests perfectly into the larger one, so that when each smaller rectangle is taken away, we are left with only the 

outermost layer:

It follows visually that the second of these outer layers is horizontally one block shorter than the first, as a result of it 

being constructed on a starting row of length (r – 1). Thus, adding the single block back in completes the identity.

scr e scr l l scr lie scr lie l I
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Part 4: Proving the Recurrence Relation

With this conjecture for s(r, l) in mind, your final challenge is to prove the recurrence relation, using induction.

Proof:

We wish to show, using induction, that 

using the recurrence relation

Base case 1: r = 1.

Thus the first base case is satisfied.

Base case 2: l = 1.
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Thus the second base case is satisfied.

Inductive Hypothesis: For all natural numbers i, j such that

assume that

Using our recurrence relation identity, we have the following:

We note that the argument of each of these sub-terms falls under our inductive hypothesis. Thus we have:

And so, by induction, the proof is complete.



 
 

65 

Reflections on the Activity 

This activity has the potential to give students a new and unique way of learning 
to understand and prove recurrence relations from a geometric basis. Compared 
to the first activity, this one is less front-loaded, which I think could engage 
students more immediately. By keeping the emphasis less on function notation 
and more on the long rectangles themselves, this activity stays firmly in the visual 
realm / feels more like play, which could help students in tackling the more 
difficult topic of verifying recurrence relations. Having only spent a moderate 
amount of time with the underlying mathematics of this activity myself, I would 
suspect that there are even richer patterns hiding in it; off the top of my head, I can 
imagine expanding the 8x8 table, and also looking for recurrence relations buried 
in it that span nonadjacent squares. How would these make sense geometrically? 
I can’t help but think that for each new recursive connection, there is an 
equivalently cool visual/geometric insight to be learned as well.  

  



 
 

66 

Activity 3: Using Conjugation on Integer Partitions 

Introduction/Notes on the Activity 
 

This activity, ideally, is intended to follow either of the previous activities – while 
students will find the idea of conjugate partitions a fairly straightforward one to 
grasp, having been exposed to the Long Rectangles partitions will set students up 
well for some of the techniques found in this activity. 

The focus of this activity is to allow students to explore the concept of self-conjugate 
partitions from a few different angles. To begin, students are shown examples of 
what conjugation means, and how to view it visually (using Ferrers diagrams); 
from there, they are introduced to the concept of self-conjugate partitions as a 
‘special case’ of conjugation partitions. 

The activity is broken into three parts. The first acts as a warm-up, giving students 
certain self-conjugate partitions (and modeling the various overall ways they can 
appear) while giving them practice at transcribing the Ferrers diagrams into sums 
of natural numbers. The second part provides students with some natural number 
n and asks them to use Ferrers diagrams (or other visual representations) to try 
and construct as many self-conjugate partitions of that n as possible on their own. 
This activity is to have a minimum of scaffolding; by the nature of self-conjugate 
partitions, students should be encouraged to explore the topic without too much 
direction. If the instructor feels it appropriate, students may be encouraged to 
consider the extreme case of the “long L” self-conjugate partition. 

The final part of the activity approaches the construction of self-conjugate 
partitions from a different angle – using perfect square partitions. The idea is that by 
this point in the activity students will have gotten familiar with the diagonal 
symmetry that marks all self-conjugate partition; so, as an opposite extreme case, 
any perfect square partition (i.e. a partition where all parts are the same size) is 
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trivially self-conjugate. Students will be given a sample perfect square partition 
color-coded such that they see it as several nested squares (this visual will stand in 
contrast to the ‘outer L’ technique used in the Long Rectangles activity). Having 
just attempted to find self-conjugate partitions from a different perspective, 
students will then get to play with removing parts of the different outer layers (or 
removing entire layers) to see what they can do. 

This activity, even if it is not explicitly emphasized in the worksheet, contains rich 
connections to integer partition patterns, relationships to core partition identities 
(such as there being a bijection between self-conjugate partitions and distinct odd 
partitions), and number theory. It is meant to be just a first taste of this rich topic 
for students, but the instructor may wish to emphasize or further develop any of 
these threads as they see fit.  
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Worksheet 

 

In this activity, we’re going to be explore some neat properties of integer partitions using a transformation called 
conjugation. Here is how it works.

Suppose we are given the following partition of n = 14:

Conjugation would take this partition and transpose its columns and rows, as shown below (colors are used to show the 
transformation).

This takes the partition 6 + 3 + 2 + 2 + 1 and turns it into a new partition: 5 + 4 + 2 + 1 + 1 + 1.

We say that these are conjugate partitions, since under conjugation, each is transformed into the other.

after this example: 

Self-Conjugate Partitions

In this activity, we’re going to focus in particular on something called self-conjugate partitions – partitions which are 
their own conjugate.

For example: Here is a partition of n = 14:

Conjugations on Integer Partitions

6 + 3 + 2 + 2 + 1
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Under conjugation, we see that the partition does not change:

This is what we mean by a self-conjugate partition.

Part 1: Transcribing Self-Conjugate Partitions

To warm up to the main activity, we will begin by looking at some self-conjugate partitions. Based on your knowledge 
of integer partitions and Ferrers diagrams, your task will be to describe each partition numerically – in other words, to 
write each n as the sum of the parts.

For example, the above self-conjugate partition of n = 14 would be:

s

14 = 6 + 4 + 2 + 2 + 1 + 1
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Several self-conjugate partitions (on various values of n) are given below. Describe each numerically, and note any 
patterns you see.

What do you notice?
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Part 2: Constructing Self-Conjugate Partitions

In this activity, each group will be given a different value for n. Your task is to find as many self-conjugate partitions of 
this number as possible.

You are encouraged to draw pictures to help constructing these partitions. As you work, keep the following questions 
in mind:

What patterns do you notice?•
Are there any strategies you found to make the process easier?•
How might you know when you’ve found all the possible self-conjugate partitions?•

Your number is n = _________.
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Part 3: Using Perfect Squares to Construct Self-Conjugate Partitions

Based on the previous activity, you may have noticed that in order to create different self-conjugate partitions on a 
fixed n, there are certain constraints on how to take away blocks from the ‘outer shell’ of the partition, and replace 
them elsewhere.

To look at this from another angle, we now consider perfect square partitions. For example, if n = 36,

is a perfect square partition (in other words, a partition where all parts are the same size).

Let us look at this partition using colors:

With this multicolor representation, do you agree that this perfect square partition is also self-conjugate? Why or why 
not?

If you believe this, how could you use this “square representation” to construct other self-conjugate partitions of 
n = 36 by removing some (or all) of each outer layer of the partition?
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What do you notice?

Can you apply any techniques you found here to find self-conjugate partitions on perfect square partitions for larger 
numbers?

Homework: Play this out on larger perfect squares. Challenge yourself! Try n = 64, n = 81, or even higher!



 
 

74 

Worksheet Answer Key 

 

In this activity, we’re going to be explore some neat properties of integer partitions using a transformation called 
conjugation. Here is how it works.

Suppose we are given the following partition of n = 14:

Conjugation would take this partition and transpose its columns and rows, as shown below (colors are used to show the 
transformation).

This takes the partition 6 + 3 + 2 + 2 + 1 and turns it into a new partition: 5 + 4 + 2 + 1 + 1 + 1.

We say that these are conjugate partitions, since under conjugation, each is transformed into the other.

after this example: 

Self-Conjugate Partitions

In this activity, we’re going to focus in particular on something called self-conjugate partitions – partitions which are 
their own conjugate.

For example: Here is a partition of n = 14:

Conjugations on Integer Partitions

6 + 3 + 2 + 2 + 1
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Under conjugation, we see that the partition does not change:

This is what we mean by a self-conjugate partition.

Part 1: Transcribing Self-Conjugate Partitions

To warm up to the main activity, we will begin by looking at some self-conjugate partitions. Based on your knowledge 
of integer partitions and Ferrers diagrams, your task will be to describe each partition numerically – in other words, to 
write each n as the sum of the parts.

For example, the above self-conjugate partition of n = 14 would be:

s

14 = 6 + 4 + 2 + 2 + 1 + 1
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Several self-conjugate partitions (on various values of n) are given below. Describe each numerically, and note any 
patterns you see.

What do you notice?

11 = 6 + 1 + 1 + 1 + 1 + 1

In general, the main observation students may 
see is that the largest part corresponds to the 
total number of parts.

25 = 8 + 6 + 3 + 2 + 2 + 2 + 1 + 1

11X

n=1

=
11 (11 + 1)

2

66 = 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1

In this case, students may note that the nature 
of this particular partition (each part differing 
by 1 from the previous part) lends itself to a 
familiar summation identity

= 66
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Part 2: Constructing Self-Conjugate Partitions

In this activity, each group will be given a different value for n. Your task is to find as many self-conjugate partitions of 
this number as possible.

You are encouraged to draw pictures to help constructing these partitions. As you work, keep the following questions 
in mind:

What patterns do you notice?•
Are there any strategies you found to make the process easier?•
How might you know when you’ve found all the possible self-conjugate partitions?•

Your number is n = ___21____.

Using n = 21 as an example, some groups may hit upon the technique of trying to begin from the ‘extreme’ case of 
creating a self-conjugate partition as a long L:

From this extreme case, students may proceed by removing (symmetrically) blocks from the ‘ends’ of the L. Each pair 
of end-blocks removed will give two blocks to place elsewhere; however, hey may notice that in order to fill in any of 
the interior of the partition while still keeping it self-conjugation, they will only be able to use an even number of blocks 
that can be split into odd piles. For example, by removing two blocks from each end of the L, the following partition may 
be constructed:
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and so on. However, the more students dig into this activity, the more they will start to have different options in terms 
of where to remove certain blocks in order to free up/create other self-conjugate partitions. To give one more example 
on the above partition, if we remove two blocks from each end of the L, we have at least two options for how to 
replace them that preserves the symmetry:

Part 3: Using Perfect Squares to Construct Self-Conjugate Partitions

Based on the previous activity, you may have noticed that in order to create different self-conjugate partitions on a 
fixed n, there are certain constraints on how to take away blocks from the ‘outer shell’ of the partition, and replace 
them elsewhere.

To look at this from another angle, we now consider perfect square partitions. For example, if n = 36,

is a perfect square partition (in other words, a partition where all parts are the same size).

Let us look at this partition using colors:
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With this multicolor representation, do you agree that this perfect square partition is also self-conjugate? Why or why 
not?

By this point in the activity, students will be attuned to the diagonal symmetry that marks all self-conjugate partitions.

If you believe this, how could you use this “square representation” to construct other self-conjugate partitions of 
n = 36 by removing some (or all) of each outer layer of the partition?

What do you notice?

Can you apply any techniques you found here to find self-conjugate partitions on perfect square partitions for larger 
numbers?

The intent with this part of the activity is to encourage students to look at manipulating their partitions from the other 
extremal case (in other words, the counterpoint to the long L). By construction, a perfect square partition is self-
conjugate; by see it as several squares nested together, students are visually led towards techniques that peel away 
outer layer by outer layer, while never losing the foundation of some “core” of inner perfect squares. This hints at the 
idea of Durfee squares being central to self-conjugate partitions, without needing to explicitly broach the subject in 
this activity (this may be worth considering as an extension, though!).

So, some examples of student work might be:
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and so on. By keeping the multicolor square layers present, students will have a nice foundation to more freely play 
with different self-conjugate partitions, and ideally feel more confident in their constructions than in the previous 
section.
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Reflections on the Activity 
 

This activity arose out of a struggle to find a solid way to introduce students to the 
idea of conjugation on partitions; originally, I’d planned on constructing the 
activity around the bijective identity between self-conjugate partitions and distinct 
odd partitions; however, in trying to develop that, it became clear that as 
interesting as that is as a bijection, it’s fairly short/lacking in terms of material to 
base an activity upon (the visual “method” for verifying it can be shown quickly). 
I’d originally conceived of providing students with entire sets of partition 
numbers, and then having them identify all self-conjugate and distinct odd 
partitions within the set, with the ultimate goal of leading them to this identity by 
the number of each being the same. But this was a fairly flimsy pretense to build 
an activity upon, and it also became apparent that even doing a few examples of 
these countings would not necessarily lead students to arrive at the desired 
identity (and more importantly, not give them any insight into why it was true). So 
this was abandoned in favor of the above activity instead. 

In its current version, my feeling is that this activity, paired with either of the 
previous Long Rectangle activities, will give students a solid introduction to some 
of the fascinating mathematics of integer partitions, and connect to each other well 
enough to form a basis for future study. As mentioned in the beginning of this 
paper, the activities and topics focused on here barely scratch the surface of the 
depth and breadth of the world of integer partitions; many more curricula could 
be developed on topics such as generating functions, Ramanujan identities, and 
more. 

Extensions 
 

As mentioned above, one thing implicit in the third part of this activity is the idea 
of Durfee squares; this activity may be extended, if the instructor wishes, to make 
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this connection more explicit (and to use it as a lead-in to any number of other 
activities which Durfee squares connect to). 

Another way that this activity could extend is by stepping away from the world of 
self-conjugate partitions into the larger pool of conjugate partitions; by removing 
the condition of being self-conjugate (but now having some experience and 
practice with them), students can analyze and compare the patterns they see by 
studying conjugate partitions more generally, which may lead towards some 
powerful bijective identities. 

Also buried in this activity was the connection between self-conjugate partitions 
and partitions into distinct odd parts. Even though the verification of that bijection 
might not be enough for its own activity, it may act as a bridge to activities which 
focus on identities involving distinct parts. One such identity, which is not at all 
obvious, is: 

 

This is just one direction that exploration of distinct identities could go. 

Finally, this activity contains subtle hints of the significance of the parts of each 
parts being odd or even. One extension in this direction would be an an activity 
asking students to remove odd partitions from the set of all partitions for some 
given n, and ask them what sorts of partitions remain (in this case, the set of all 
partitions of either even parts, or a mixture of even and odd parts).   
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